Deformation of a renormalization-group equation applied to infinite-order phase transitions.

نویسنده

  • Hisamitsu Mukaida
چکیده

By adding a linear term to a renormalization-group equation in a system exhibiting infinite-order phase transitions, the asymptotic behavior of running coupling constants is derived in an algebraic manner. A benefit of this method is presented explicitly using several examples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New renormalization group approach to the universality classification of infinite-order phase transitions

We derive a new renormalization group to calculate a non-trivial critical exponent of the divergent correlation length which gives a universality classification of essential singularities in infinite-order phase transitions. This method resolves the problem of a vanishing scaling matrix in infinite-order phase transitions. The exponent is obtained from the maximal eigenvalue of a scaling matrix...

متن کامل

ساختار فاز میدانهای پیمانه‌ای شبکه‌ای دو بعدی U(N) با کنش مختلط

  We study the phase structure of two dimensional pure lattice gauge theory with a Chern term. The symmetry groups are non-Abelian, finite and disconnected sub-groups of SU(3). Since the action is imaginary it introduces a rich phase structure compared to the originally trivial two dimensional pure gauge theory. The Z3 group is the center of these groups and the result shows that if we use one ...

متن کامل

The Electroweak Phase Transition through the Renormalization Group

We study the high-temperature phase transitions for the Abelian and SU(2) Higgs models, using the exact renormalization group. The evolution equation for a properly-defined coarse-grained free energy is solved. The phase diagram of the Abelian Higgs model has a region of second-order phase transitions governed by fixed points, for which we calculate critical exponents and crossover curves. It a...

متن کامل

Renormalization Group: Applications in Statistical Physics

These notes aim to provide a concise pedagogical introduction to some important applications of the renormalization group in statistical physics. After briefly reviewing the scaling approach and Ginzburg–Landau theory for critical phenomena near continuous phase transitions in thermal equilibrium, Wilson’s momentum shell renormalization group method is presented, and the critical exponents for ...

متن کامل

Ja n 20 05 Universal scaling behavior of non - equilibrium phase transitions Sven Lübeck

Non-equilibrium critical phenomena have attracted a lot of research interest in the recent decades. Similar to equilibrium critical phenomena, the concept of universality remains the major tool to order the great variety of non-equilibrium phase transitions systematically. All systems belonging to a given universality class share the same set of critical exponents, and certain scaling functions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 70 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004